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Protecting sensitive information is critical for governments, companies, and institutions.

Redaction enables sharing documents while concealing confidential content, balancing RQ1: Can LLMs perform accurate, domain-specific redactions beyond basic Pl
transparency with security. removal 2,3] while preserving document utility and minimizing leakage?

Example: The redacted documents released by the U.S. Government under FOIA 1 _ - _ _
RQ2: How can synthetic document pipelines be designed to systematically evaluate

The challenge: Redaction is done manually by experts. The Process IS SIOW, COStIy, and and fine-tune LLM-based redaction across domains and information types?
error-prone [1]. Rules vary widely across domains such as finance, energy, and defense,
making automation difficult. RQ3: Which evaluation metrics best capture the frade-off between redaction

dual leak . N
Our contribution: We introduce REDACTBENCH, the first framework to: accuracy, residual leakage, and retained utility
A. Generate synthetic documents to benchmark redaction performance

B. Automate context-aware information redaction by using LLM-based agents.
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Guideline
GnaIS: \ Not Acceptable /
1. Generate synthetic documents using LLMs that contain both confidential (to be
redacted) and non-confidential (to be preserved) information. Goals:
Use LLMs to optimize the trade-off between document utility (retaining useful,
2. These documents should be realistic in content, structure, and complexity to non-confidential content) and leakage (eliminating all confidential information).
serve as effective benchmarks for LLM-based redaction.
Approach:
Approach: We design four LLM-based components (agents) that operate on a document:
Domain selection: Military, finance, energy,... Extractor: ldentifies information types and their relationships.
Collect information types: Bootstrap from real documents, manual inputs, or Al- Redactor: Removes content matching domain-specific confidentiality guidelines
driven web searches to gather domain-relevant information types. (e.g., “chemical compound names are confidential”).
Examples: Military aircraft models, chemical compounds, monthly revenue, Inferer: Attempts to reconstruct redacted information to detect potential leaks.
procurement costs, geographic descriptions. Utility: Evaluates whether the redacted document retains informational value
Create templates: Generate document templates that combine multiple information
types in realistic structures. The Redactor blocks the Inferer from recovering hidden

Render documents: Populate templates with varied instances of each information
type to produce realistic benchmark documents.

content while preserving the Utility evaluation

Leakage Test: The / Inferer LLM \ Evaluation: We built proof-of-concept * Fully automate the.pipeline to take a user-selegted
Inferer examines the P \  Implementations for all pipeline components and LLM, benchmark, fine-tune, and. .re-benchmark INn a
redacted document and Select the most likely option\ generated 30 batches of synthetic documents with closed loop until leakage and utility targets are met.

for 'number of discrete an LLM. * Improve the Inferer and Utility modules to handle

answers multiple-choice | | e 00 oo i rREDACTED more complex information types.
guestions [4] about the DOCUMENT]:

removed content. After redacting sensitive content, analysis of
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