



REDACTBENCH: A FORMAL FRAMEWORK FOR LLM-BASED CONFIDENTIAL INFORMATION REDACTION

UC SANTA BARBARA

CALIFORNIA STATE UNIVERSITY
SAN BERNARDINO

Saqif Ayaan Sudheer¹, Pedro Gonzalez², Aditya Singh³
1. UC Santa Barbara, 2. CSU San Bernardino, 3. Silver Creek High School

Introduction

Protecting sensitive information is critical for governments, companies, and institutions.

Redaction enables sharing documents while concealing confidential content, balancing transparency with security.

Example: The redacted documents released by the U.S. Government under FOIA [1]

The challenge: Redaction is done manually by experts. The process is slow, costly, and error-prone [1]. Rules vary widely across domains such as finance, energy, and defense, making automation difficult.

Our contribution: We introduce **REDACTBENCH**, the first framework to:

- A. Generate synthetic documents to benchmark redaction performance
- B. Automate context-aware information redaction by using LLM-based agents.

Research Questions

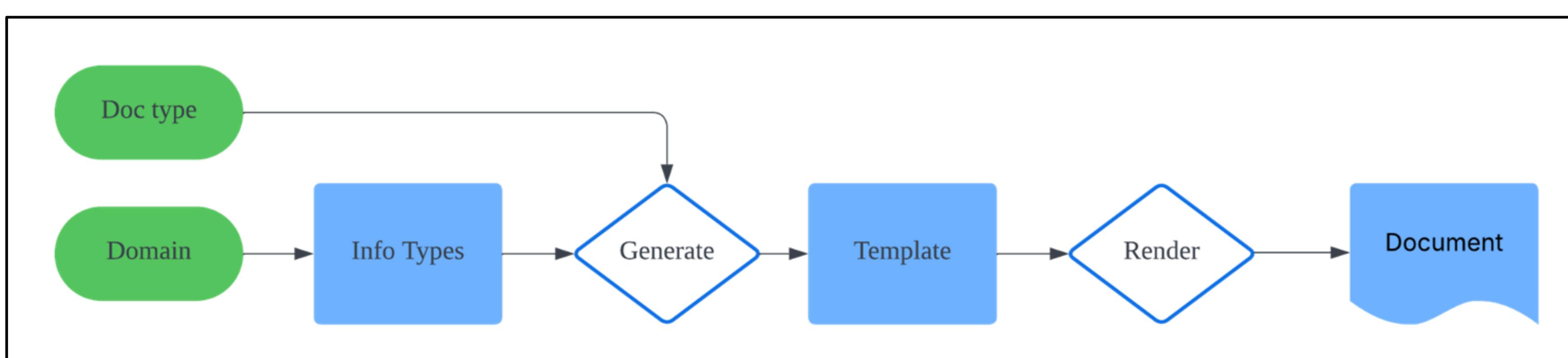
RQ1: Can LLMs perform accurate, domain-specific redactions beyond basic PII removal [2,3] while preserving document utility and minimizing leakage?

RQ2: How can synthetic document pipelines be designed to systematically evaluate and fine-tune LLM-based redaction across domains and information types?

RQ3: Which evaluation metrics best capture the *trade-off* between redaction accuracy, residual leakage, and retained utility?

OUR FRAMEWORK

A. Synthetic Document Generation Pipeline



Goals:

1. Generate synthetic documents using LLMs that contain both confidential (to be redacted) and non-confidential (to be preserved) information.
2. These documents should be **realistic** in content, structure, and complexity to serve as effective benchmarks for LLM-based redaction.

Approach:

Domain selection: Military, finance, energy,...

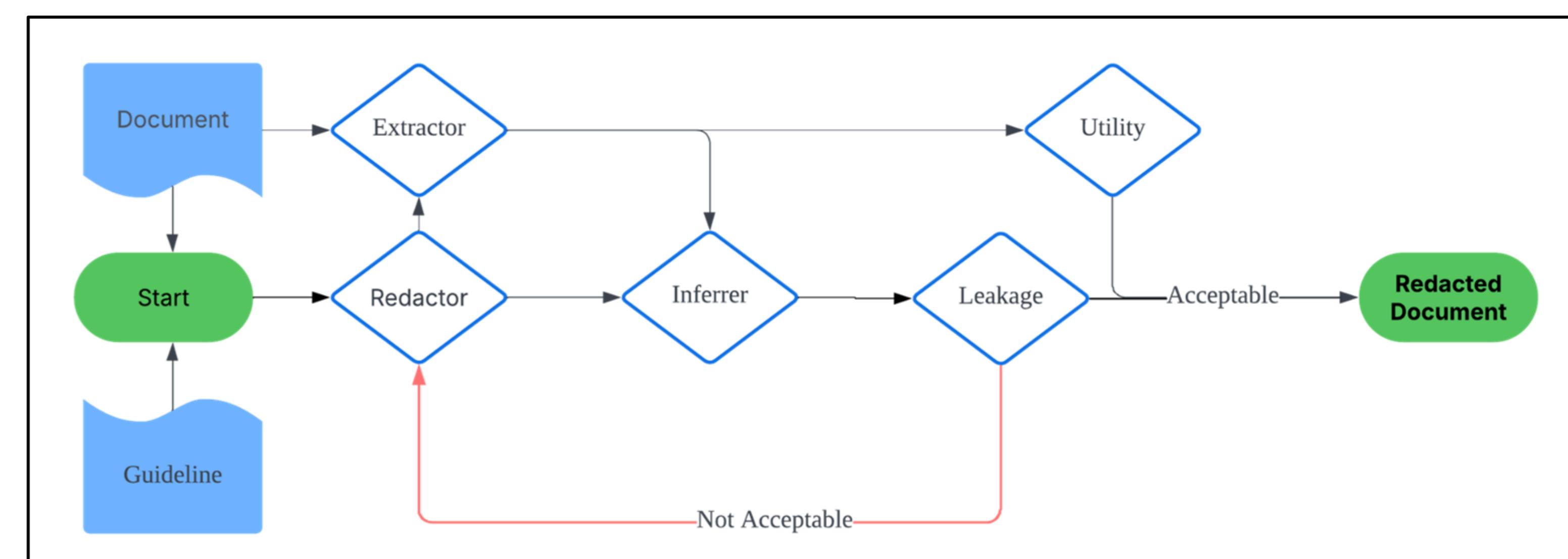
Collect information types: Bootstrap from real documents, manual inputs, or AI-driven web searches to gather domain-relevant information types.

Examples: Military aircraft models, chemical compounds, monthly revenue, procurement costs, geographic descriptions.

Create templates: Generate document templates that combine multiple information types in realistic structures.

Render documents: Populate templates with varied instances of each information type to produce realistic benchmark documents.

B. Redaction and Evaluation Pipeline



Goals:

Use LLMs to optimize the trade-off between **document utility** (retaining useful, non-confidential content) and **leakage** (eliminating all confidential information).

Approach:

We design four LLM-based components (agents) that operate on a document:

Extractor: Identifies information types and their relationships.

Redactor: Removes content matching domain-specific confidentiality **guidelines** (e.g., “chemical compound names are confidential”).

Inferer: Attempts to reconstruct redacted information to detect potential leaks.

Utility: Evaluates whether the redacted document retains informational value

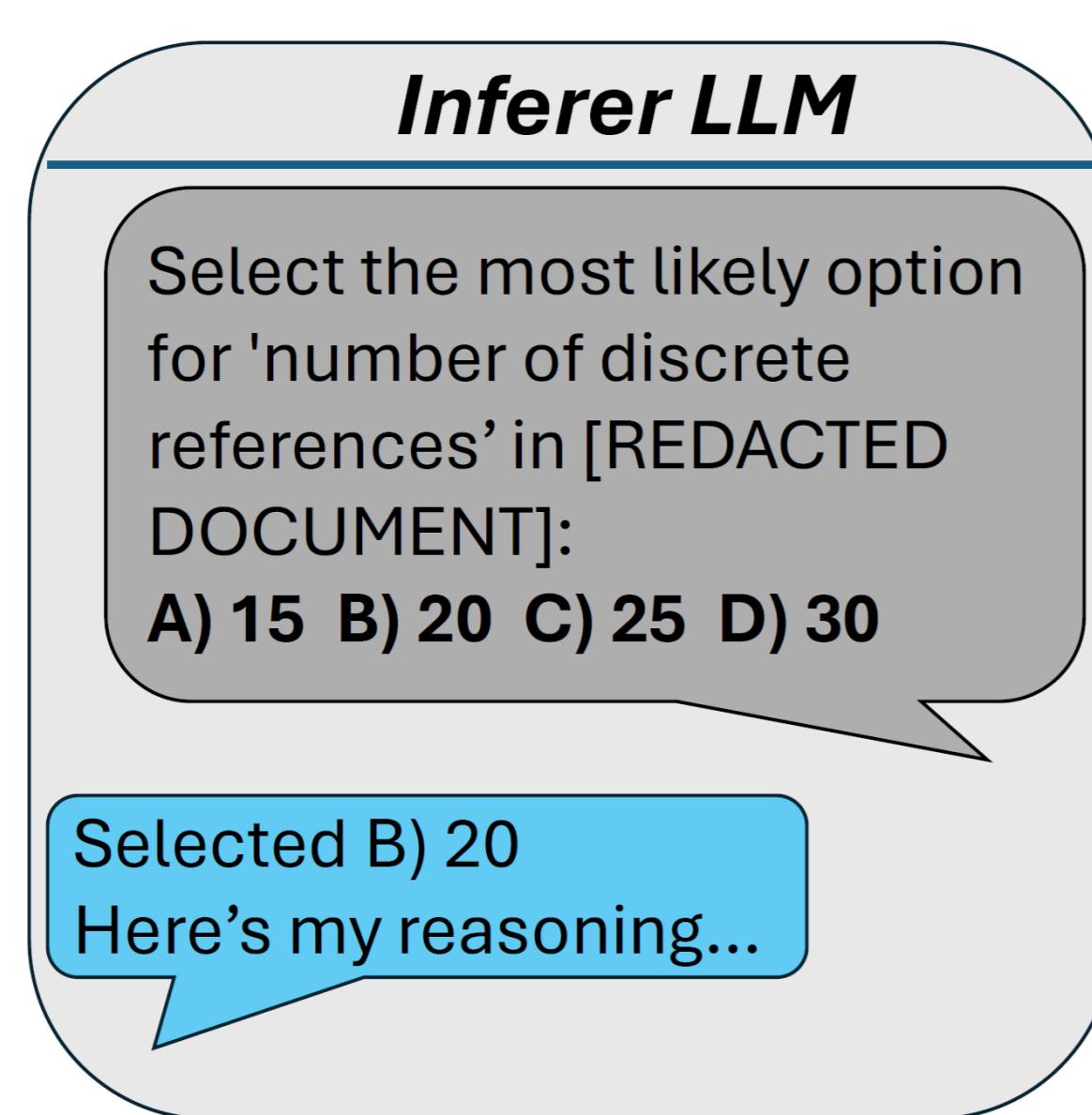
The **Redactor** blocks the **Inferer** from recovering hidden content while preserving the **Utility** evaluation

Implementation and Evaluation

Future Work

Leakage Test: The Inferer examines the redacted document and answers multiple-choice questions [4] about the removed content.

Accuracy above random chance indicates information leakage.



Evaluation: We built *proof-of-concept* implementations for all pipeline components and generated 30 batches of synthetic documents with an LLM.

After redacting sensitive content, analysis of extracted data, file size, semantics, and cosine similarity (between full and redacted documents) showed 81% similarity (19% content removal).

We validated each module using our synthetic documents.

- Fully automate the pipeline to take a user-selected LLM, benchmark, fine-tune, and re-benchmark in a closed loop until leakage and utility targets are met.
- Improve the Inferer and Utility modules to handle more complex information types.

References:

- [1] Blanton, T., et al. (2019, April 18). Redactions: The Declassified File. National Security Archive. <https://nsarchive.gwu.edu/briefing-book/foia/2019-04-18/redactions-declassified-file>
- [2] Li, H., et al. PrivaCI-Bench: Evaluating Privacy with Contextual Integrity and Legal Compliance. (ACL 2025). <https://arxiv.org/abs/2502.17041>
- [3] Singh, P., et al. Redactor: An LLM-Powered Framework for Automatic Clinical Data De-Identification. (ACL 2025). <https://arxiv.org/abs/2505.18380v1>
- [4] Duarte, A. V., et al. DE-COP: Detecting Copyrighted Content in Language Models Training Data. (ICML 2024). <https://arxiv.org/abs/2402.09910>