

Using Off-Policy Self-Play Reinforcement Learning on Dots and Boxes: Designing Leagues For Performance

Erik Feng¹, João Hespanha¹

1. UC Santa Barbara

1. Purpose

- Agent-to-agent self-play scales interaction and information to a level not possible with humans.
- The quality of the interactions of the agents remains crucial for sample-efficient learning.
- Using Dots and Boxes, a simple, scalable game, we design *leagues*¹ (i.e. groups or cohorts) to curate opponents that are more likely to provide high-quality interactions, and benchmark their performances.

2. Background and context

Dots and Boxes: A turn-based game where players draw lines between adjacent dots. Completing a box yields a square and an additional turn. The player with more squares when the game ends wins.

Research questions:

- How does **league type** (PFSP variants vs pure self-play) affect learning?
- Does model **capacity** (hidden size) matter at the step budgets we can afford?
- How does **credit assignment** ($g=0$ vs $g \neq 0$) change sample-efficiency and final strength?

Example League

ELO	Model	Sampling Probability
1100	model3	<div style="width: 80%;"></div>
1056	model1	<div style="width: 70%;"></div>
985	model2	<div style="width: 50%;"></div>
935	model0	<div style="width: 10%;"></div>

League samples stronger opponents more often

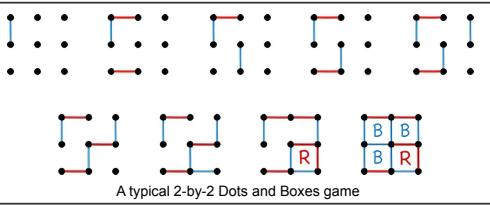


Image from Pencil And Paper Games

3. Methods and Math

- Using **5-by-5 Dots and Boxes games**
- League design**¹ (PFSP variants vs self-play)
- Credit assignment: $g=0$ vs $g \neq 0$**
- Two Deep-Q-Network MLPs w/ hidden sizes $\in \{2, 16, [32, 32]\}$.
- League Settings**
 - PFSP-var (even matches)
 - PFSP-hard (hardest)
 - PFSP-target (70% percentile)
 - Self sampling
- Opponent snapshot frozen for N episodes**
 - Reduces non-stationarity. (In most runs: freeze $N=200$, self-play 10–60%, random 5–20%).
- ϵ -greedy exploration:** ϵ decays to 0.05 on a fixed schedule.
- Credit Assignment:**

Same player moves:

$$y = r + \gamma \max_{a' \in A_p(s')} Q_{\text{tgt},p}(s', a')$$

Opponent moves:

$$y = r - \gamma \max_{a' \in A_{1-p}(s')} Q_{\text{tgt},1-p}(s', a')$$

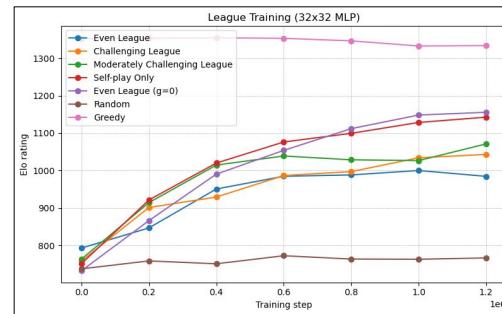
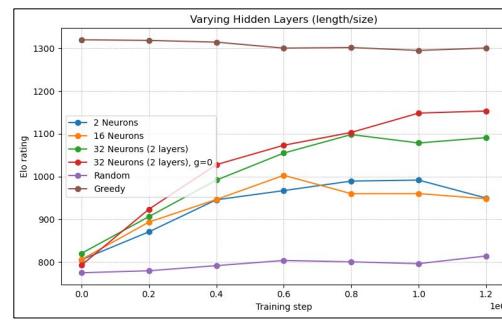
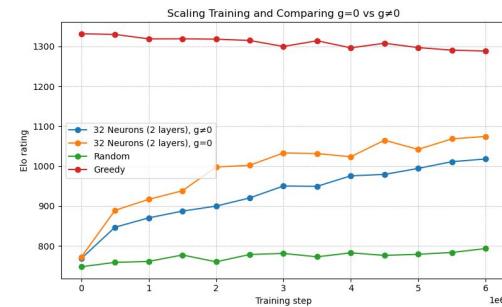
Baseline ($g=0$):

$$y = r$$

Double-DQN next-value³ (for reward propagation and action selection):

$$a^* = \arg \max_{a'} Q_{\text{online},\text{actor}}(s', a'), \quad q_{\text{next}} = Q_{\text{tgt},\text{actor}}(s', a^*)$$

4. Graphs



5. Conclusions

League Type: League type seems not to make a difference in training performance. However, due to numerous optimizations, such as alpha-ramp, the leagues may not have been well-differentiated.

Model Capacity: Larger models tended to perform better, though this difference is easier to see with more training.

Credit assignment: In training, $g=0$ tended to increase performance. Whether if scaling training will reveal the short-sightedness of the model is still unknown.

Other Crucial Optimizations:

- Freezing Opponents for N episodes (after selecting from league) increases stability
- Increasing self-play early, then decreasing to increase league matches
- Alpha-ramp: start with $g=0$, then fade in sign-flip to learn greedy strategies quickly

6. Future Directions

Architecture changes: CNNs and GNNs provide more spatial information than MLPs.

League Management: Dynamic push and pops may allow for better training signals.

Train scaling: Scaling training to more steps may reveal weaknesses in myopic strategies (such as when $g=0$).

7. References

- Vinyals, O., et al., "Grandmaster level in StarCraft II using multi-agent reinforcement learning," 2019 Nature.
- Lanctot, M., et al., "OpenSpiel: A Framework for Reinforcement Learning in Games," 2019 arXiv.
- Van Hasselt, H., Guez, A., & Silver, D., "Deep Reinforcement Learning with Double Q-Learning," 2016 AAAI.