
A B C

Optimizing Python Vulnerability Detection with
LLM-enhanced Rule Generation
Weiheng Bai¹, Evelyn Gutierrez², Austin Chan³, Lukas Dresel4

1. University of Minnesota 2. California State University, San Bernardino 3. University
of California, Berkeley 4 University of California, Santa Barbara

Supported by the National Science Foundation under grant no. IIS-2229876 and is
supported in part by funds provided by the NSF, by the Department of Homeland
Security, and by IBM.

https://action.ucsb.eduAI Institute for Agent-based
Cyber Threat Intelligence and
Operation

• The rapid detection and patching of code vulnerabilities are
crucial in minimizing the window of exploitation by malicious
attackers.

• Static Application Security Testing (SAST) tools are designed to
aid developers in identifying such vulnerabilities.

• SAST tools rely on pattern matching to detect vulnerabilities.

Background

• The generation of vulnerability detection rule patterns currently
relies heavily on extensive manual effort.

• These rule patterns are often incomplete, contributing to the low
detection rates observed in SAST tools.

• The rule patterns are unable to identify newly reported
vulnerabilities in a timely manner.

Limitation of SAST tools

• RQ1: How to automatically generate the pattern rules?
• RQ2: How to improve the detection rates?
• RQ3: How to catch the newly reported vulnerabilities in real

time?

Research Questions

PyPI Packages

CVE List

CVEs related to
PyPI Packages

match include

• CVE ID

• Affected Version

• Reference of CVE

normalize

LLM Summary of Exploitation
generate

extract

LLM
Semgrep

Rules
generate

normalized affected version

Repository

Affected APIs
detection

detection

YES

detection

YES

YES

Repository including
vulnerabilities

detection Detect whether the required version of PyPi packages
of the repository is the version affected by CVEs

detection Detect whether the affected APIs is invoked in
repository by Regular Expression

detection Detect whether the repository includes vulnerabilities
related to known CVEs

 Introduction

 Architecture

 Detection Example (CVE-2024-3660)

CVE ID

Affected
Version

Reference

detection

Software Bill of Materials (SBOM) of huggingface/transformer

Description of CVE-2024-3660
Summary of Exploitation of CVE-2024-3660

Affected API

Code Example-1 in transformer directory

Code Example-2 in transformer directory
Detection 1: including vulnerable version

detection

detection

Semgrep Rules for DetectionDetection 2: matching affected API by RegEx

Detection 3: scanning by generated rules
Code Example-1 is affected by CVE-2024-3660

 Preliminary Result

• We generated Semgrep Rules for 392 CVEs related to Top 100
PyPI packages since 2019.

• We process our 3 detections on 50, 681 Github repositories.

Dataset Selection

• Result of Detection 1: 11691 repositories include vulnerable
version of packages in SBOM.

• Result of Detection 2: 4532 repositories invoke the vulnerable
APIs

• Result of Detection 3: 3210 repositories are truly affected by
CVE vulnerabilities

Finding

• Accuracy of affected version normalization: 97.27%
• Accuracy of CVEs matching with PyPI packages: 64.49%
• Accuracy of API extraction: 78.91%
• Accuracy of Semgrep rules generation: 80.87%

Accuracy of components

Limitations

• Challenges in Achieving High Accuracy in Matching CVEs with
PyPI Packages
• The current approach for matching CVEs with PyPI packages

relies on product and vendor names. Some of CVEs lack these
identifiers, which hinders effective matching.

• Issues with Accuracy in API Extraction
• The accuracy of API extraction is compromised by the current

methodology, involving selective analysis by LLMs of a subset of
references to minimize computational costs. However, this
approach leads to inaccuracies, as some references include
information on multiple CVEs. Consequently, the LLM may
inadvertently extract APIs related to CVEs beyond the specific
one being targeted.

• Inaccuracies in Semgrep Rules Generation
• The generation of Semgrep rules also faces accuracy issues,

primarily due to the presence of grammatical errors within the
YAML syntax. These errors are likely attributable to the limited
quantity and quality of Semgrep rules in the training datasets used
by the LLM, resulting in suboptimal rule generation.

Future Work

Reference

• To improve the accuracy of matching CVEs with PyPI packages, we
will integrate additional features, such as the URLs of references,
into the matching algorithm.

• To address the challenges in API extraction, a novel method is
proposed: first, generate summaries for each reference, then compile
these summaries to enable LLMs to extract the correct affected APIs
and summaries of exploitation more accurately.

• Improving the accuracy of Semgrep rules generation can be achieved
by constructing a benchmark dataset that includes both exploitation
summaries and Semgrep rules. This dataset can then be used to
fine-tune an LLM specifically for the purpose of generating accurate
Semgrep rules.

• Extending the evaluation process to include a broader range of PyPI
packages and GitHub repositories.

