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• The rapid detection and patching of code vulnerabilities are 
crucial in minimizing the window of exploitation by malicious 
attackers.

• Static Application Security Testing (SAST) tools are designed to 
aid developers in identifying such vulnerabilities. 

• SAST tools rely on pattern matching to detect vulnerabilities.

Background

• The generation of vulnerability detection rule patterns currently 
relies heavily on extensive manual effort.

• These rule patterns are often incomplete, contributing to the low 
detection rates observed in SAST tools.

• The rule patterns are unable to identify newly reported 
vulnerabilities in a timely manner.

Limitation of SAST tools

• RQ1: How to automatically generate the pattern rules?
• RQ2: How to improve the detection rates?
• RQ3: How to catch the newly reported vulnerabilities in real 

time?
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• We generated Semgrep Rules for 392 CVEs related to Top 100 
PyPI packages since 2019.

• We process our 3 detections on 50, 681 Github repositories.

Dataset Selection

• Result of Detection 1: 11691 repositories include vulnerable 
version of packages in SBOM.

• Result of Detection 2: 4532 repositories invoke the vulnerable 
APIs

• Result of Detection 3: 3210 repositories are truly affected by 
CVE vulnerabilities

Finding

• Accuracy of affected version normalization: 97.27%
• Accuracy of CVEs matching with PyPI packages: 64.49%
• Accuracy of API extraction: 78.91%
• Accuracy of Semgrep rules generation: 80.87%

Accuracy of components

Limitations

• Challenges in Achieving High Accuracy in Matching CVEs with 
PyPI Packages
• The current approach for matching CVEs with PyPI packages 

relies on product and vendor names. Some of CVEs lack these 
identifiers, which hinders effective matching.

• Issues with Accuracy in API Extraction
• The accuracy of API extraction is compromised by the current 

methodology, involving selective analysis by LLMs of a subset of 
references to minimize computational costs. However, this 
approach leads to inaccuracies, as some references include 
information on multiple CVEs. Consequently, the LLM may 
inadvertently extract APIs related to CVEs beyond the specific 
one being targeted.

• Inaccuracies in Semgrep Rules Generation
• The generation of Semgrep rules also faces accuracy issues, 

primarily due to the presence of grammatical errors within the 
YAML syntax. These errors are likely attributable to the limited 
quantity and quality of Semgrep rules in the training datasets used 
by the LLM, resulting in suboptimal rule generation.

Future Work

Reference

• To improve the accuracy of matching CVEs with PyPI packages, we 
will integrate additional features, such as the URLs of references, 
into the matching algorithm. 

• To address the challenges in API extraction, a novel method is 
proposed: first, generate summaries for each reference, then compile 
these summaries to enable LLMs to extract the correct affected APIs 
and summaries of exploitation more accurately.

• Improving the accuracy of Semgrep rules generation can be achieved 
by constructing a benchmark dataset that includes both exploitation 
summaries and Semgrep rules. This dataset can then be used to 
fine-tune an LLM specifically for the purpose of generating accurate 
Semgrep rules. 

• Extending the evaluation process to include a broader range of PyPI 
packages and GitHub repositories. 


