UC SANTA BARBARA

https://action.ucsb.edu

One-Shot Root-Cause Analysis Using a Fine-Tuned LLM

Marco Cerrato¹, Grace Jin², Jonathan Aguilar¹, Lukas Dresel³, Giovanni Vigna³ 1. CSU San Bernardino, 2. Cornell University, 3. UC Santa Barbara Cornell University CAL STATE SAN BERNARDINO

Introduction	Research Question
MOTIVATION: Determining the location and cause of a vulnerability can be extremely time-consuming, but LLMs can help human analysts discover the root cause of bugs faster.	How effective is an LLM-guided approach at
We break the problem into 2 tasks: First, identifying the vulnerable file and then identifying the vulnerable function in the file.	reducing analysis time for identifying
DATASET: ~1,000 crash reports and patch data from OSS-Fuzz.	vulnerabilities in large-scale projects,
Fine-tune a GPT-40 mini LLM and measure how well it can perform either task, compared to the base model and the flagship 40 model.	compared to traditional methods and
Evaluate performance of root-cause identification on real-world vulnerability and patching datasets.	baseline models?

Project Architecture

70.00%			70.00%		
60.00% 50.00% 40.00% 30.00% 20.00% 10.00% 0.00% E E E F	40-mb 40-mb 40-mm 40-mC 40-mC 40-mC	40-b 40-l 40-l 40-l 40-l 40-l	60.00% 50.00% 40.00% 20.00% 10.00% 0.00% 日日日日日日日日日日日日日日日日日日日日日日日日日日日日	40-mC 40-mC 40-b 40-b 40-b 40-l 40-l 40-l 40-l	 Task A: fine-tuned LLM-guided approach does not offer noticeable advantage over baseline models in vulnerable file identification. Task B: fine-tuned LLM-guided approach shows higher performance than baseline models in vulnerable function identification. Vulnerable File Identification approach needs to be re-considered. It
Accuracy: Identifying File Accuracy: Identifying Function		remains a critical task, and discovering better solutions is imperative.			
	Single-Response	Тор-3	Single-Res	ponse Top-3	References
Fine-Tuned Model	57.50%	79.17%	Fine-Tuned Model 64.91%	83.33%	OpenAI API Reference. <u>https://platform.openai.com/docs/api-reference/introduction</u>
Fine-Tuned Hybrid Model	62.50%	75.83%	Fine-Tuned Hybrid Model 64.91%	% 84.21%	Ding, Y., Fu, Y., Ibrahim, O., Sitawarin, C., Chen, X., Alomair, B., Wagner, D., Ray, B., & Chen, Y. (2024, March 27). <i>Vulnerability Detection with Code Language Models: How Far Are We?</i> arXiv.org. <u>https://arxiv.org/abs/2403.18624</u>
	•				

Al Institute for Agent-based Cyber Threat Intelligence and Operation Supported by the National Science Foundation under grant no. IIS-2229876 and is supported in part by funds provided by the NSF, by the Department of Homeland Security, and by IBM.