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Introduction Research Question

e MOTIVATION: Determining the location and cause of a vulnerability can be extremely time-consuming, but LLMs can help human analysts . _
discover the root cause of bugs faster. How effective is an LLM-guided approach at

We break the problem into 2 tasks: First, identifying the vulnerable file and then identifying the vulnerable function in the file. reducing analysis time for identifying
DATASET: ~1,000 crash reports and patch data from OSS-Fuzz. vulnerabilities in |_a_r99'sca|e projects,
Fine-tune a GPT-40 mini LLM and measure how well it can perform either task, compared to the base model and the flagship 40 model. compared to tr?dltlonal methods and
Evaluate performance of root-cause identification on real-world vulnerability and patching datasets. baseline models?
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Evaluation Tests Results Costs
|dentifying Function, Top3 Response

e Models’ single response and top 3 responses
to test queries were evaluated.

Fine-tuned models more cost effective than: 4o0-mini-multishot, 4o0-base, 40-latest.
Less cost effective than: 4o0-mini-base, 40-mini-Chain-of-Thought.

Fine-tuned models equally cost effective compared to each other.
e The evaluation test consisted of 40 queries Cost of fine-tuning:

across 7 models. o FTA/FTB = $39, each
o Hybrid = cost(FTA) + 39 = $78

e Each row in the heat maps correspond to
different LLM models.

. E$§'t“”ed modelsfor Tasks A, Bare FIA, | | _TASK A: Average Cost per Test (in$) ,TASK B: Average Cost per Test (in $)
e Hybrid models are HA, HB 3
1
e Columns represent evaluation queries in test. y)
Identifying File, Single Response 0.5
(a) BASELINE: gpt-4o-latest 1
(b) BASELINE: gpt-40-base
(c) BASELINE: gpt-40-mini-Chain-of-Thought 0 R — _ 0 s e B
(d) BASELINE: gpt-4o-mini-multishot m FTA u HB m 40-mb m 40-mm m 40-mC m 4o-b m 4o-1 m FTB m HA m40-mb l40 -mm H 4o- mC ¥ 40-b m4o-l

(e) BASELINE: gpt-40-mini-base
(f) Fine-Tuned-Hybrid
(g9) Fine-Tuned-Model

Task A Task B  Fuurework
e Single Response (Blue): FTA has no performance e Single Response (Blue): FTB & HA outperforms every Cuture Work:
advantage, HA slightly outperforms other models. other model by 12.28% to 19.30% ° Ou Il:JlZ?thecr)rl-l. er-narameter tuning for both models
e Top 3 Responses (Purple): FTA & HA show no e Top 3 Responses (Purple): FTB & HB outperforms o Expand e)c:Iuaption with data frc?m other sources. other models. etc
rf dvantage. th del f 7.9% to 10.539 ’ ey
performance advantage every other model from 7.9% to /o o Improve Task A approach, e.g., by integrating tool-calling support for
e : : the models.
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remains a critical task, and discovering better solutions is imperative.
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