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I. TL;DR
In this measurement study, we identify thousands of websites that deploy LLM-based 
chatbot plugins with serious vulnerabilities.
1. 8 of the 20 plugins in our study, used by over 1500 websites, fail to verify the chat 

history. This allows an adversary to manipulate the bot by fabricating a fake history.
2. Three plugins, used by over 500 websites, expose system prompts (considered 

intellectual property) directly in HTTP request made from the client. 
3. Three plugins, used by over 250 university websites, expose admin-provided documents 

verbatim containing potentially non-public information (e.g. email addresses)

II.  Why Are Custom LLM Chatbots Less Secure than Your 
ChatGPT.com Interface?

● Combining LLM and web vulnerabilities exposes a serious flaw in 8 of the 20 plugins we 
analyze, affecting over 1500 websites in our dataset. 

● These plugins handle chat history insecurely through HTTP POST requests. This enables an 
adversary to trick the chatbot into performing unintended tasks by fabricating a message 
history i.e. putting words into the chatbot’s mouth.

III.  Vulnerabilities Affecting LLM Chatbots

Fake Chat History: Gaslighting the Chatbot

VI.  References

V.  What Industries Are Using LLM Chatbots?IV.  Our Large-Scale Measurements

Model Poisoning through Publicly-Modifiable Content (e.g. Reviews)

● Where do LLM chatbots get their customization data? Often, from an automated crawler that 
scoops up everything on the website. The crawled data can include publicly-modifiable 
information (like reviews). This allows an adversary to “poison” the model with harmful 
content. 

● In a subset of 28 randomly chosen websites from plugins that offer crawlers, we found one 
example of poisoning and two sites at risk. 

● To understand which industries are most impacted by LLM chatbot vulnerabilities, we 
categorize our 3094 websites using a RandomForestClassifier trained on the Kaggle 
Company Classification dataset.
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● We use the July 2024 Common Crawl dataset to scan 7.8 million hostnames belonging to a 
subset of four million domains from the top ten million by Open PageRank. In total, we 
identify 3094 websites that embed code for 20 LLM chatbot plugins.

● Currently, we’re studying the potential for the Fake Chat History attack to trick a chatbot 
into performing arbitrary tasks. For example, an adversary could use this attack to create a 
general-purpose chatbot net: 

1. Take the subset of our dataset vulnerable to the Fake Chat History attack
2. Test on five tasks designed to surpass a customer service chatbot’s intended purpose
3. Measure the change in success rate after altering chat history
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